REGISTRATION NUMBER

\square

SRINIX COLLEGE OF ENGINEERING

$2^{\text {nd }}$ INTERNAL EXAMINATION-2021-22

Subject-SA-II
Semester-5 ${ }^{\mathbf{T H}}$
Branch-CIVIL
Full Mark-100
Time-2.30Hrs

ANSWER ALL QUESTIONS (PART-A)

[2X10=20]

1. Define Plastic Hinge.
2. Define Upper band theorem and Lower band theorem.
3. Find the shape factor of a rectangle?
4. What do you mean by mechanism and define load factor.
5. What is the shape factor for a circular section having 30 cm . diameters?
6. What do you mean by plastic section modulus?
7. A fixed beam is subjected to a point load at the centre, find the collapse load.
8. Write the expression for horizontal thrust for a two hinged arch.
9. Mention the relationship between flexibility and stiffness.
10. Write down the equation for a parabolic arch of span ' L ' and central rise ' h ' with left support on origin.

ANSWER ANY Eight QUESTIONS (PART-B)

[6X8=48]

1. A fixed beam ABC has two spans. $\mathrm{AB}=5 \mathrm{~m}, \mathrm{BC}=4 \mathrm{~m}$. End A is fixed. C has a overhanging portion of 0.6 m ,where a point load of 50 KN is acting . On AB two point loads of 200 KN each act a at 1.5 m from A and B respectively . On BC a $75 \mathrm{KN} / \mathrm{m}$ is acting throughout the span. Analyze the beam by slope deflection method. Assume uniform flexural rigidity.
2. A two hinged parabolic arch of span 20 m and rise 3.6 m carries two concentrated load of 25 kN at crown and 20 kN at the left quarter span section. Find the horizontal thrust at each support and the bending moment at the loaded section.
3. Derive the expression for a shape factor for circular section having diameter D .
4. State upper bound and lower bound theorems and write their applications.
5. A continuous beam ABC consists of spans AB ad BC of lengths 5 m and 6 m respectively. Both ends A and C of the beam are having fixed support condition. The moment of inertia of span $A B$ is four times of $B C$. The span $A B$ carries a uniformly distributed load of $20 \mathrm{kN} / \mathrm{m}$, while span BC carries a uniformly distributed load of $30 \mathrm{kN} / \mathrm{m}$. Find the support moments using kani's method.
6. A two hinged parabolic arch of span 40 m and rise 8 m carries a point load of 80 kN at a distance of 10 m from the left support.Find the horizontal thrust at each support. Find also the maximum bending moment.
7. A fixed beam $A B C$ has two spans, $A B=6 \mathrm{~m}$ and $B C=4 \mathrm{~m}$. A udl of $30 \mathrm{Kn} / \mathrm{m}$ acts on span AB , on BC appoint load of 20 kN acts at 1 m from ' B '. Analyze the beam using slope deflection method and also draw bending moment diagram.
8. A continuous beam $A B C D$ has three spans, $A B=3 m, B C=4 m, C D=4 m$. And A is simply supported and D is fixed. A point load of 10 KN acts at 1 m from A on span $A B$.On BC a udl of $5 \mathrm{KN} / \mathrm{m}$ acts. On span CD a point load of 20 KN acts at the centre $\mathrm{I}_{\mathrm{ab}}: \mathrm{I}_{\mathrm{bc}}: \mathrm{I}_{\mathrm{cd}}=1.5: 2: 1$.Determine the support moments at A,B,C,D using kani's method.
9. A continuous beam ABCD is fixed at A and D . $\mathrm{AB}=5 \mathrm{~m}, \mathrm{BC}=4 \mathrm{~m}, \mathrm{CD}=5 \mathrm{~m}$, A point load of 12 KN act at 1 m from end A on $A B$. On $B C$ an udl of $5 \mathrm{KN} / \mathrm{m}$ is acting throughout the span. At the center of CD a point load of 5 KN is acting Calculate the support moments at $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ using moment distribution method .All members are having uniform EI value.
10. Apropped cantilever of span 5 m subjected to a uniformly distributed load of $8 \mathrm{kN} / \mathrm{m}$. If the plastic moment capacity of the beam is Mp.Find the collapse load based on basic principle,Draw the bending moment diagram.

ANSWER ANY TWO QUESTIONS (PART-C)

[16X2=32]

1. Determine the collapse load in a fixed beam shown in figure.

2. A suspension cable of 120 m span and 12 m central dip carries a load of $2 \mathrm{kN} / \mathrm{m}$. Calculate minimum and maximum tension in the cable. Find the horizontal and vertical forces in each pier under the following condition:-
a) If the cable passes over a frictionless roller on the top of the pier.
b) If the cable is firmly clamped to saddles carried on frictionless roller on top of the piers.
3. Determine the plastic moment capacity of the section required for the frame shown in figure. The loads shown are the working loads. Take load factor $\lambda=1.75$. Assume same plastic moment capacity for all the members.

